Files
node-similarity-search-native/similarity_search.c

345 lines
10 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include "similarity_search.h"
// Case insensitive string comparison
int str_case_cmp(const char *s1, const char *s2) {
while (*s1 && *s2) {
int c1 = tolower((unsigned char)*s1);
int c2 = tolower((unsigned char)*s2);
if (c1 != c2) {
return c1 - c2;
}
s1++;
s2++;
}
return tolower((unsigned char)*s1) - tolower((unsigned char)*s2);
}
// Split a string into words
int split_into_words(const char *string, char *words[MAX_WORDS]) {
if (!string || strlen(string) >= MAX_STRING_LEN) {
return 0;
}
char temp[MAX_STRING_LEN];
strncpy(temp, string, MAX_STRING_LEN - 1);
temp[MAX_STRING_LEN - 1] = '\0';
int word_count = 0;
char *token = strtok(temp, " \t\n");
while (token != NULL && word_count < MAX_WORDS) {
words[word_count] = strdup(token);
if (!words[word_count]) {
// Free any already allocated words on error
for (int i = 0; i < word_count; i++) {
free(words[i]);
}
return 0;
}
word_count++;
token = strtok(NULL, " \t\n");
}
return word_count;
}
// Free memory allocated for words
void free_words(char *words[], int word_count) {
for (int i = 0; i < word_count; i++) {
free(words[i]);
}
}
// Calculate similarity between two words based on character matching
float word_similarity(const char *word1, const char *word2) {
int len1 = strlen(word1);
int len2 = strlen(word2);
// For very short words (3 chars or less), require exact match
if (len1 <= 3 || len2 <= 3) {
return str_case_cmp(word1, word2) == 0 ? 1.0f : 0.0f;
}
int max_len = len1 > len2 ? len1 : len2;
if (max_len == 0) return 0.0f;
// Count matching characters (case insensitive)
int matches = 0;
int i = 0, j = 0;
while (i < len1 && j < len2) {
if (tolower((unsigned char)word1[i]) == tolower((unsigned char)word2[j])) {
matches++;
i++;
j++;
} else if (tolower((unsigned char)word1[i]) < tolower((unsigned char)word2[j])) {
i++;
} else {
j++;
}
}
// Calculate similarity based on matching characters
float char_similarity = (float)matches / max_len;
// Require higher similarity for shorter words
float min_similarity = 0.7f; // Default minimum
if (len1 <= 5 || len2 <= 5) {
min_similarity = 0.9f; // Higher requirement for short words
}
// If similarity is below minimum, return 0
if (char_similarity < min_similarity) {
return 0.0f;
}
// If words are the same length, give a small boost
if (len1 == len2) {
char_similarity = char_similarity * 1.1f; // 10% boost for same length
if (char_similarity > 1.0f) char_similarity = 1.0f;
}
return char_similarity;
}
// Calculate similarity between query and target string
float calculate_similarity(const char *query, const char *target, float cutoff) {
// Split strings into words
char *query_words[MAX_WORDS] = {0};
char *target_words[MAX_WORDS] = {0};
int query_word_count = split_into_words(query, query_words);
int target_word_count = split_into_words(target, target_words);
if (query_word_count == 0 || target_word_count == 0) {
free_words(query_words, query_word_count);
free_words(target_words, target_word_count);
return 0.0;
}
// Track best matches for each query word
float best_word_similarities[MAX_WORDS] = {0.0f};
int query_words_found = 0;
// For each query word, find its best match in target words
for (int i = 0; i < query_word_count; i++) {
float best_similarity = 0.0f;
for (int j = 0; j < target_word_count; j++) {
float similarity = word_similarity(query_words[i], target_words[j]);
if (similarity > best_similarity) {
best_similarity = similarity;
}
}
best_word_similarities[i] = best_similarity;
if (best_similarity >= 0.8f) { // Consider it a match if similarity is high enough
query_words_found++;
}
}
// Calculate overall similarity
float word_match_score = (float)query_words_found / query_word_count;
// Calculate average of best word similarities
float avg_word_similarity = 0.0f;
for (int i = 0; i < query_word_count; i++) {
avg_word_similarity += best_word_similarities[i];
}
avg_word_similarity /= query_word_count;
// Combine scores: 70% weight on word matches, 30% on character similarity
float similarity = (word_match_score * 0.7f) + (avg_word_similarity * 0.3f);
// If all query words were found with high similarity, ensure high overall score
if (query_words_found == query_word_count && avg_word_similarity >= 0.8f) {
similarity = 1.0f; // Perfect match
}
free_words(query_words, query_word_count);
free_words(target_words, target_word_count);
return similarity;
}
// Compare function for qsort to sort results by similarity (descending)
int compare_results(const void *a, const void *b) {
const SearchResult *result_a = (const SearchResult *)a;
const SearchResult *result_b = (const SearchResult *)b;
if (result_b->similarity > result_a->similarity) return 1;
if (result_b->similarity < result_a->similarity) return -1;
return 0;
}
// Generate a random word
void generate_random_word(char *word, int max_len) {
int len = 3 + rand() % 8; // Random length between 3 and 10
for (int i = 0; i < len; i++) {
word[i] = 'a' + (rand() % 26);
}
word[len] = '\0';
}
// Generate a random string consisting of multiple words
void generate_random_string(char *string, int max_len) {
if (!string || max_len <= 0) {
return;
}
int num_words = 2 + rand() % 5; // Random number of words between 2 and 6
string[0] = '\0';
size_t current_len = 0;
for (int i = 0; i < num_words; i++) {
char word[20];
generate_random_word(word, sizeof(word) - 1);
size_t word_len = strlen(word);
size_t space_needed = word_len + (i > 0 ? 1 : 0); // +1 for space if not first word
if (current_len + space_needed < (size_t)max_len - 1) {
if (i > 0) {
strncat(string, " ", max_len - current_len - 1);
current_len++;
}
strncat(string, word, max_len - current_len - 1);
current_len += word_len;
} else {
break;
}
}
}
// Create a new search index
SearchIndex* create_search_index(int capacity) {
if (capacity <= 0) return NULL;
SearchIndex* index = (SearchIndex*)malloc(sizeof(SearchIndex));
if (!index) return NULL;
index->strings = (char**)malloc(capacity * sizeof(char*));
if (!index->strings) {
free(index);
return NULL;
}
index->num_strings = 0;
index->capacity = capacity;
return index;
}
// Add a string to the index
int add_string_to_index(SearchIndex* index, const char* string) {
if (!index || !string) return -1;
// Check if we've reached capacity
if (index->num_strings >= index->capacity) {
return -1;
}
// Check if string is too long
if (strlen(string) >= MAX_STRING_LEN) {
return -1;
}
index->strings[index->num_strings] = strdup(string);
if (!index->strings[index->num_strings]) return -1;
index->num_strings++;
return 0;
}
// Free the search index and all associated memory
void free_search_index(SearchIndex* index) {
if (!index) return;
for (int i = 0; i < index->num_strings; i++) {
free(index->strings[i]);
}
free(index->strings);
free(index);
}
// Search the index with the given query and similarity cutoff
SearchResult* search_index(SearchIndex* index, const char* query, float cutoff, int* num_results) {
if (!index || !query || !num_results) return NULL;
// Validate input string length
if (strlen(query) >= MAX_STRING_LEN) {
*num_results = 0;
return NULL;
}
// Validate cutoff
if (cutoff < 0.0f || cutoff > 1.0f) {
*num_results = 0;
return NULL;
}
// Allocate temporary array for results
SearchResult* temp_results = (SearchResult*)malloc(index->num_strings * sizeof(SearchResult));
if (!temp_results) return NULL;
*num_results = 0;
// Search through all strings in the index
for (int i = 0; i < index->num_strings; i++) {
float similarity = calculate_similarity(query, index->strings[i], cutoff);
if (similarity >= cutoff) {
// Store a copy of the string in the result
temp_results[*num_results].string = strdup(index->strings[i]);
if (!temp_results[*num_results].string) {
// Free any already allocated strings on error
for (int j = 0; j < *num_results; j++) {
free(temp_results[j].string);
}
free(temp_results);
return NULL;
}
temp_results[*num_results].similarity = similarity;
(*num_results)++;
}
}
// Sort results by similarity
qsort(temp_results, *num_results, sizeof(SearchResult), compare_results);
// Allocate final result array with exact size
SearchResult* results = (SearchResult*)malloc(*num_results * sizeof(SearchResult));
if (!results) {
// Free all strings in temp_results
for (int i = 0; i < *num_results; i++) {
free(temp_results[i].string);
}
free(temp_results);
return NULL;
}
// Copy results to final array
for (int i = 0; i < *num_results; i++) {
results[i].string = temp_results[i].string;
results[i].similarity = temp_results[i].similarity;
}
free(temp_results);
return results;
}
// Free the search results
void free_search_results(SearchResult* results, int num_results) {
if (!results) return;
// Free all strings in the results
for (int i = 0; i < num_results; i++) {
free(results[i].string);
}
free(results);
}