133 lines
4.5 KiB
JavaScript
133 lines
4.5 KiB
JavaScript
import OpenAI from 'openai';
|
|
import 'dotenv/config';
|
|
import EventEmitter from 'events';
|
|
import path from 'path';
|
|
import fs from 'fs/promises';
|
|
import { fileURLToPath } from 'node:url';
|
|
|
|
async function loadTools() {
|
|
const __dirname = path.dirname(fileURLToPath(import.meta.url));
|
|
const toolsDir = path.join(__dirname, "tools");
|
|
const dirents = await fs.readdir(toolsDir, { withFileTypes: true });
|
|
const toolEntries = await Promise.all(
|
|
dirents
|
|
.filter((dirent) => dirent.isFile() && dirent.name.endsWith(".js"))
|
|
.map(async (dirent) => {
|
|
const fileName = dirent.name.replace(/\.js$/, "");
|
|
const module = await import(`file://${path.join(toolsDir, dirent.name)}`);
|
|
return [fileName, { def: module.default, run: module.run }];
|
|
})
|
|
);
|
|
return Object.fromEntries(toolEntries);
|
|
}
|
|
const toolsByFile = await loadTools();
|
|
|
|
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
|
|
|
|
const systemprompt = {"role": "developer", "content": [ { "type": "input_text","text":
|
|
|
|
`You are a helpful assistant.`
|
|
|
|
}]};
|
|
|
|
if (!Array.fromAsync) {
|
|
Array.fromAsync = async function fromAsync(asyncIterable) {
|
|
const array = [];
|
|
for await (const item of asyncIterable) {
|
|
array.push(item);
|
|
}
|
|
return array;
|
|
};
|
|
}
|
|
|
|
class ModelDialog {
|
|
constructor() {
|
|
this.messages = [systemprompt];
|
|
this.isActive = false;
|
|
this.currentStream = null;
|
|
this.previousResponseId = null;
|
|
this.emitter = new EventEmitter();
|
|
this.inputTokens = {};
|
|
this.outputTokens = {};
|
|
this.cachedTokens = {};
|
|
this.lastDebouncedUpdate = 0;
|
|
};
|
|
|
|
handleUsage = (usage, model) => {
|
|
this.inputTokens[model] = usage.input_tokens-usage.input_tokens_details.cached_tokens;
|
|
this.outputTokens[model] = usage.output_tokens;
|
|
this.cachedTokens[model] = usage.input_tokens_details.cached_tokens;
|
|
}
|
|
|
|
on = (event, callback) => {
|
|
const debounceTime = 1000; // 1 second
|
|
|
|
const debouncedCallback = (...args) => {
|
|
const now = Date.now();
|
|
if (now - this.lastDebouncedUpdate >= debounceTime) {
|
|
this.lastDebouncedUpdate = now;
|
|
callback(...args);
|
|
}
|
|
};
|
|
|
|
this.emitter.on(event, debouncedCallback);
|
|
}
|
|
|
|
interrogate = async (prompt) => {
|
|
if(this.isActive) return;
|
|
this.isActive = true;
|
|
|
|
this.messages.push({"role": "user", "content": [ {"type": "input_text","text": prompt }]});
|
|
|
|
const call = {
|
|
model: 'gpt-5-nano',
|
|
input: structuredClone(this.messages),
|
|
text: { format: { type: 'text' }, verbosity: 'low' },
|
|
reasoning: { effort: 'medium', summary: 'detailed' },
|
|
tools: Object.values(toolsByFile).map(t => t.def),
|
|
store: true,
|
|
previous_response_id: this.previousResponseId
|
|
}
|
|
|
|
this.currentStream = await openai.responses.stream(call);
|
|
this.currentStream.on('response.created', (event) => {
|
|
this.previousResponseId = event.response.id;
|
|
});
|
|
|
|
const deltas = [];
|
|
this.currentStream.on('response.output_text.delta', (event) => {
|
|
deltas.push(event.delta);
|
|
this.emitter.emit('outputUpdate', deltas.join(''));
|
|
});
|
|
|
|
const reasoningDeltas = [];
|
|
this.currentStream.on('response.reasoning_summary_text.delta', (event) => {
|
|
if(!reasoningDeltas[event.summary_index]) reasoningDeltas[event.summary_index] = [];
|
|
reasoningDeltas[event.summary_index].push(event.delta);
|
|
this.emitter.emit('reasoningUpdate', reasoningDeltas[event.summary_index].join(''));
|
|
});
|
|
|
|
this.currentStream.on('response.reasoning_summary_text.done', (event) => {
|
|
//console.log(event);
|
|
});
|
|
|
|
|
|
|
|
let output;
|
|
this.currentStream.on('response.completed', async (event) => {
|
|
this.handleUsage(event.response.usage, event.response.model);
|
|
output = event.response.output;
|
|
});
|
|
|
|
await Array.fromAsync(this.currentStream);
|
|
this.isActive = false;
|
|
const now = Date.now();
|
|
this.lastDebouncedUpdate = now;
|
|
return {
|
|
output: output.filter(i => i.type === 'message').map(i => i.content[0].text).join('\n') ,
|
|
reasoning: reasoningDeltas.map(i => i.join('')),
|
|
inputTokens: this.inputTokens, outputTokens: this.outputTokens, cachedTokens: this.cachedTokens};
|
|
}
|
|
}
|
|
|
|
export default ModelDialog; |