da5e7476a06a904dbe4cb51be47bf3aa0bd5ff40
Similarity Search
A Node.js module that performs word order independent similarity search on strings.
This module is built as a native addon that uses C code for fast similarity computations. It uses Jaccard similarity between word sets to find matches regardless of word order.
Installation
npm install
Usage
const SimilaritySearch = require('./index');
// Create a new search index with default capacity (500)
const index = new SimilaritySearch();
// Add strings to the index
index.addString('bio bizz');
index.addString('lightmix bizz btio substrate');
index.addString('bizz bio mix light');
// Add multiple strings at once
index.addStrings([
'plant growth bio formula',
'garden soil substrate'
]);
// Search the index with a query and similarity cutoff
const results = index.search('bio bizz', 0.2);
// Display results
results.forEach(match => {
console.log(`${match.similarity.toFixed(2)}: ${match.string}`);
});
API
new SimilaritySearch([capacity])
Creates a new search index.
capacity(optional): Initial capacity for the index. Default: 500.
addString(str)
Adds a string to the index.
str: The string to add.- Returns: Boolean indicating success.
addStrings(strings)
Adds multiple strings to the index.
strings: Array of strings to add.- Returns: Boolean indicating if all adds were successful.
search(query, [cutoff])
Searches the index for strings similar to the query.
query: The search query.cutoff(optional): Similarity threshold between 0.0 and 1.0. Default: 0.2.- Returns: Array of matching results, sorted by similarity (descending).
size()
Gets the number of strings in the index.
- Returns: Number of strings in the index.
Helper Functions
SimilaritySearch.createTestIndex([size])
Creates a test index with random data.
size(optional): Number of strings to generate. Default: 500.- Returns: A new SimilaritySearch instance with random data.
SimilaritySearch.benchmark(index, queries, [cutoff])
Benchmarks the search performance.
index: The index to benchmark.queries: Array of search queries.cutoff(optional): Similarity threshold. Default: 0.2.- Returns: Benchmark results.
How It Works
The similarity search uses Jaccard similarity between word sets:
similarity = (number of matching words) / (total unique words)
This means word order doesn't matter - "bio bizz" will match with "bizz bio" with 100% similarity.
Building
To rebuild the native addon:
npm install
Testing
Run the test script:
npm test
Description
Languages
C
51%
JavaScript
24.4%
C++
21.6%
Python
3%